Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Numerical Investigation of the Trailing Edge Shape on the Added Damping of a Kaplan Turbine Runner.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Hydraulic turbine runners experience high excitation forces in their daily operations, and these excitations may cause resonances to runners, which may induce high vibrations and shorten the runner's lifetimes. Increasing the added damping of runners in water can be helpful to reduce the vibration level during resonances. Some studies have shown that the modification of the trailing edge shape can be helpful to increase added damping of hydrofoils in water. However, the influence of blade trailing edge shape on the added damping of hydraulic turbine runners has been studied in a limited way before. Due to the difficulties to study this problem experimentally, the influence of blade trailing edge shape on a Kaplan turbine runner has been studied numerically in this paper and the one-way FSI method was implemented. The performances of three different turbulence models, including the k − ϵ , k − ω SST , and transition SST models, in the added damping simulation of the NACA 0009 hydrofoil were evaluated by comparing with the available results of the two-way FSI simulation in the references. Results show that, unlike the significantly different performances in the two-way FSI method, the performances of all the turbulence models are very close in the one-way FSI method. Then, the k − ϵ turbulence model was applied to the added damping simulation of a Kaplan turbine runner, and results show that the modification of the blade trailing edge shape can be helpful to increase the added damping to some extent. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Mathematical Problems in Engineering is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)