Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

An adjusted location model for SuperDARN backscatter echoes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      The radars that form the Super Dual Auroral Radar Network (SuperDARN) receive scatter from ionospheric irregularities in both the E- and F-regions, as well as the Earth's surface, either ground or sea. For ionospheric scatter, the current SuperDARN standard software considers a straight-line propagation from the radar to the scattering zone with an altitude assigned by a standard height model. The knowledge of the group delay to a scatter volume is not sufficient for an exact determination of the location of the irregularities. In this study, the difference between the locations of the backscatter echoes determined by SuperDARN standard software and by ray tracing has been evaluated, using the ionosonde data collected at Sodankylä, which is in the field-of-view of Hankasalmi SuperDARN radar. By studying elevation angle information of backscattered echoes from the data sets of Hankasalmi radar in 2008, we have proposed an adjusted fitting location model determined by slant range and elevation angle. To test the reliability of the adjusted model, an independent data set is selected in 2009. The result shows that the difference between the adjusted model and the ray tracing is significantly reduced and the adjusted model could provide a more accurate location for backscatter targets. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Annales Geophysicae (09927689) is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)