Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Amorphous Co(OH)2 nanosheet electrocatalyst and the physical mechanism for its high activity and long-term cycle stability.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Good conductivity is conventionally considered as a typical reference standard in terms of selecting water electrolysis catalysts. Cobalt hydroxide (Co(OH)2) has received extensive attention for its exceptional properties as a promising electrocatalysis catalyst. However, research on Co(OH)2 so far prefers to its crystal phase instead of amorphous phase because the former generally exhibits better conductivity. Here, we have demonstrated that the amorphous Co(OH)2 electrocatalyst synthesized via a simple, facile, green, and low-cost electrochemistry technique possesses high activity and long-term cycle stability in the oxygen evolution reaction (OER). The as-synthesized Co(OH)2 electrode was found to be a promising electrocatalyst for mediating OER in alkaline media, as evidenced by the overpotential of 0.38 V at a current density of 10 mA cm-2 and a Tafel slope of 68 mV dec-1. The amorphous Co(OH)2 also presented outstanding durability and its stability was just as well as that of crystalline Co(OH)2. Generally, the integrated electrochemical performances of the amorphous Co(OH)2 in the OER process were much superior to that of the crystalline Co(OH)2 materials. We also established that the short-range order, i.e., nano-phase, of amorphous Co(OH)2 creates a lot of active sites for OER which can greatly promote the electrocatalysis performance of amorphous catalysts. These findings showed that the conventional understanding of selecting electrocatalysts with conductivity as a typical reference standard seems out of date for developing new catalysts at the nanometer, which actually open a door to applications of amorphous nanomaterials as an advanced electrocatalyst in the field of water oxidation. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Applied Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)