Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

TENS augments blood flow in somatotopically linked spinal cord segments and mitigates compressive ischemia.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Study Design:This was an acute basic physiological study in anesthetized adult male rats.Objectives:The purpose of this study was to determine, in an animal model, whether innocuous somatic stimulation, in the form of transcutaneous electrical nerve stimulation (TENS), could produce a sustained augmentation of spinal cord blood flow, and whether this effect was robust in the face of relatively mild, non-destructive compression of the spinal cord.Setting:Neurophysiology laboratory, Canadian Memorial Chiropractic College, Toronto, Canada.Methods:In anesthetized adult male Wistar rats, spinal cord blood flow was measured with laser Doppler flowmetry during 5- and 15-min epochs of TENS stimulation in uncompressed and compressed lumbar spinal cord.Results:TENS applied to the L4/L5 dermatomes was associated with augmentation of blood flow in somatotopically linked spinal cord segments. This augmentation was robust in the face of non-destructive compression of the spinal cord, was sustained for periods of stimulation up to 15 min and occurred in the absence of any change in the mean arterial blood pressure.Conclusions:TENS augments spinal cord blood flow in the uncompressed spinal cord and during acute, non-destructive spinal cord compression. It remains to be seen whether similar results can be achieved in chronically compressed spinal cord and spinal nerve roots, and whether these results have clinical implications in human syndromes of spinal cord compression.Sponsorship:This work was supported by internal research funds from Canadian Memorial Chiropractic College. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Spinal Cord is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)